# Pod

  • Docker 以容器为单位部署应用,而 k8s 以 Pod 为单位部署应用。
  • 一个 Pod 包含一个或多个容器,又称为容器组。

# 配置

  • 例:简单的 Pod 配置

    apiVersion: v1
    kind: Pod
    metadata:
      name: curl
      namespace: default
    spec:                           # Pod 的规格,表示期望 k8s 将该 Pod 部署成什么样子
      containers:                   # 在 Pod 中定义一组容器
      - command:
        - ping
        - baidu.com
        name: curl                  # 容器名
        image: alpine/curl:latest
    
    • 将上述配置文件导入 k8s ,即可创建一个 Pod 。省略的其它配置参数会采用默认值。
  • 例:详细的 Pod 配置

    apiVersion: v1
    kind: Pod
    metadata:
      name: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:latest
        # imagePullPolicy: Always
        args:                             # 容器的启动命令,这会覆盖 Dockerfile 的 CMD 指令
        - nginx
        - -c
        - /etc/nginx/nginx.conf
        command:                          # 容器的启动参数,这会覆盖 Dockerfile 的 ENTRYPOINT 指令
        - bash
        - -c
        env:                              # 添加环境变量到容器终端
        - name: k1
          value: v1
        workingDir: /tmp                  # 容器的工作目录,这会覆盖 Dockerfile 的 WORKDIR 指令
        # terminationMessagePath: /dev/termination-log  # 挂载一个文件到容器内指定路径,用于记录容器的终止信息
        # terminationMessagePolicy: File
      imagePullSecrets:                   # 拉取镜像时使用的账号密码,从指定名称的 k8s secret 对象中读取
        - name: my_harbor
      # restartPolicy: Always             # 重启策略
      # schedulerName: default-scheduler  # 调度器的名称。默认采用 k8s 自带的 kube-scheduler ,用户也可以部署其它调度器
      # terminationGracePeriodSeconds: 30 # kubelet 主动终止 Pod 时的宽限期,默认为 30s
      # hostname: <string>                # 容器内的 hostname ,默认等于 pod name
      # hostIPC: false                    # 是否采用宿主机的 IPC namespace
      # hostNetwork: false                # 是否采用宿主机的 Network namespace
      # hostPID: false                    # 是否采用宿主机的 PID namespace
      # shareProcessNamespace:false       # 是否让所有容器共用 pause 容器的 PID namespace
    
  • Static Pod 是一种特殊的 Pod ,由 kubelet 管理,不受 apiserver 控制,不能调用 ConfigMap 等对象。

    • 用法:启动 kubelet 时加上参数 --pod-manifest-path=/etc/kubernetes/manifests,然后将 Pod 的配置文件保存到该目录下。kubelet 会定期扫描配置文件,启动 Pod 。
    • 例如用 kubeadm 部署 k8s 集群时,会先用 systemctl 方式部署 kubelet ,然后 kubelet 以 Static Pod 方式部署 apiserver、kube-scheduler 等 k8s 组件。

# containers

  • 一个 Pod 中可以运行多个容器,特点:

    • 各个容器必须设置不同的 name 。
    • 所有容器内的 hostname 默认都等于 Pod name ,模拟一个虚拟机。
    • 所有容器会被部署到同一个 k8s node 上。
      • 所有容器共享一个 Network namespace ,可以相互通信。绑定同一个 Pod IP ,因此不能监听同一个端口号。
      • 所有容器共享挂载的所有 volume 。
      • 所有容器采用独立的 PID namespace ,保证每个容器的主进程的 PID 为 1 。
  • Pod 中的容器分为几种类型:

    • 普通容器
      • 一个 Pod 至少包含一个普通容器,用于运行一个业务应用。也可包含多个普通容器,但增加了 Pod 的复杂程度。
    • init 容器
      • :启动 Pod 时,会先启动其中的 init 容器,用于执行一些初始化任务,执行完成之后就退出容器。
      • 一个 Pod 可包含任意个 init 容器,它们会按 YAML 配置中的顺序,从上到下依次执行。
        • 一个 Pod 中同时只能执行一个 init 容器。
        • 当一个 init 容器执行成功之后(即进入 Succeeded 阶段),才启动下一个 init 容器。
        • 当所有 init 容器都执行成功之后,才认为 init 阶段结束,同时启动所有普通容器。
        • 如果某个 init 容器执行失败,则触发 restartPolicy ,重启整个 Pod 。
      • 原生 k8s 认为 init 容器不应该长期运行,因此不支持 lifecycle、Probe 等配置。
      • init 容器可能多次重启、重复执行,因此用户使用 init 容器时,应该实现幂等性。
      • 例:
        kind: Pod
        spec:
          containers:                 # 普通容器
          - name: nginx
            image: nginx:latest
          initContainers:             # init 容器
          - name: init
            image: alpine/curl:latest
            # restartPolicy: Always   # sidecar 形式的 init 容器
            command:
              - touch
              - /tmp/f1
        
    • 辅助容器(Sidecar)
      • :用于运行一些辅助服务,例如采集日志、监控告警、服务网格。
      • 原生 k8s 没有设计 sidecar 类型的容器,当用户需要在 Pod 中运行一些辅助服务时,考虑到 init 容器不能长期运行,只能以普通容器的方式运行 sidecar ,这存在以下问题:
        • 一个 Pod 包含不止一个普通容器,增加了 Pod 的复杂程度。
        • 修改 sidecar 时需要重建 Pod 。
        • 不能让 sidecar 在 init 容器之前启动。
        • sidecar 通常会长期运行,导致 Job 类型的 Pod 不会终止。
      • k8s v1.28 增加了 sidecar 形式的 init 容器:如果给一个 init 容器配置 restartPolicy: Always ,则允许该 init 容器长期运行。
        • 该容器依然会按 init 容器的顺序启动。当该容器启动并通过 readinessProbe 健康检查时,才启动下一个 init 容器。
        • 当 Pod 中的普通容器都退出时,整个 Pod 就算终止。即使还有 sidecar 形式的 init 容器在运行,也会被终止。
  • 临时容器(Ephemeral Containers)

    • :一种临时存在的容器,用于人工调试。
    • 临时容器不能在 Pod spec 中定义,只能通过 API 创建。不会自动重启,不会自动删除。
    • 例:在指定节点创建一个临时容器。这会创建一个 Pod ,名为 node-debugger-xxx ,采用 hostNetwork、hostPID 等
      kubectl debug node/<node> -it --image=alpine/curl:latest -- sh
      kubectl delete pod node-debugger-xxx
      
    • 例:创建一个临时容器,添加到指定的 Pod
      kubectl debug <pod> -it --image=alpine/curl:latest -- sh
          -c <name>         # 创建这个临时容器的名称
          --target=<name>   # 共享指定容器的 PID namespace
      

# 拉取镜像

  • Pod 中每个容器可分别配置 imagePullPolicy ,表示拉取镜像的策略。
    • 默认配置为 Always ,表示每次创建容器时,都要拉取一次镜像。如果本机已存在该镜像,则只是校验哈希值。
    • 可改为 IfNotPresent ,表示本机不存在该镜像时,才拉取一次。如果本机存在该镜像,则直接使用,不拉取。
      • 优点:
        • 即使 docker 仓库故障,也能使用本机已存在的镜像,启动 Pod 。
      • 缺点:
        • Pod 不一定采用最新版本的 Docker 镜像。
        • 不需要 imagePullSecrets 就能使用本机已存在的镜像,存在安全风险。
  • 例:假设制作一个镜像 nginx:latest ,部署成 Pod 。然后制作一个新镜像,哈希值不同,但依然命名为 nginx:latest ,推送到镜像仓库。当重新部署 Pod 时,
    • 如果 imagePullPolicy 为 IfNotPresent ,则会使用本机已有的旧镜像。
    • 如果 imagePullPolicy 为 Always ,则会拉取新镜像。
  • 每个节点的 kubelet 可以同时启动多个 Pod ,但默认以串行方式拉取镜像,即同时只拉取一个镜像。
    • 如果想并行拉取镜像,可修改 kubelet 的配置参数:
      serializeImagePulls: false    # 取消串行拉取镜像,即采用并行拉取
      maxParallelImagePulls: <int>  # 最多并行拉取多少个镜像,默认不限制
      
    • 评价并行拉取:
      • 优点:避免因为一个 Pod 拉取镜像慢,而阻塞其它 Pod 拉取镜像。
      • 缺点:如果 kubelet 同时启动多个 Pod ,且这些 Pod 采用相同的镜像,则并行拉取会重复拉取相同的镜像,反而比串行拉取慢。
    • 如果从内网镜像仓库拉取镜像,网速很快,则建议采用串行拉取。

# 日志

  • 容器内的应用程序,建议按以下方式输出日志:
    • 尽量将所有日志,输出到容器终端 stdout、stderr ,这样会被 k8s 自动采集、清理。
    • 如果将日志输出到容器内某个磁盘文件,则需要考虑如何采集、清理该文件,较麻烦。
      • 可以在 Pod 中增加一个 sidecar 容器,保持运行 tail -f xx.log 命令,将文件中的日志,拷贝到容器终端输出。
      • 可以在 Pod 中增加一个 sidecar 容器,保持运行 filebeat 进程,采集文件中的日志,发送到 kafka 等数据平台。
    • 程序异常终止时,可以将少量信息记录到 /dev/termination-log 文件中。
      • 默认 Pod 配置了 terminationMessagePolicy: File ,表示让 k8s 读取 /dev/termination-log 的内容,记录到 Pod 的 status 中,便于用户查看 Pod 的终止原因。
      • 如果 Pod 配置了 terminationMessagePolicy: FallbackToLogsOnError ,则 Pod 异常终止时,k8s 会先尝试读取 /dev/termination-log 的内容。如果该文件为空,则读取容器终端输出的最后 2KB 内容,记录到 Pod 的 status 中。

# env

  • Pod 中每个容器,可以配置一组 env 环境变量。例如:

    kind: Pod
    spec:
      containers:
      - name: curl
        image: alpine/curl:latest
        env:
        - name: IP
          value: '127.0.0.1'
        - name: PORT
          value: '80'
    
    • k8s 创建容器时,会自动将这些变量加入 shell 环境变量,供容器内进程读取。
    • 用户可以进入容器终端,执行 env ,查看 shell 环境变量有哪些。
  • 进一步地,k8s 还支持在创建容器之前,引用 env 环境变量。例如:

    kind: Pod
    spec:
      containers:
      - name: curl
        image: alpine/curl:latest
        command: ["echo", "$(URL)"]       # 配置容器时,可以在 command、args 命令中引用环境变量
        env:
        - name: IP
          value: '127.0.0.1'
        - name: PORT
          value: '80'
        - name: URL
          value: 'http://$(IP):$(PORT)'   # 配置 env 时,可以在一个环境变量中,引用另一个已经赋值的环境变量
    

    注意区分以下几种语法:

    command: ["echo", "$IP:${PORT}"]          # 这是直接执行 echo 命令,不是在 shell 中执行命令,因此 $ 符号不会生效,输出结果为 $IP:${PORT}
    command: ["sh", "-c", "echo $IP:${PORT}"] # 这是在 shell 中执行命令,因此 $ 符号会读取 shell 环境变量,输出结果为 127.0.0.1:80
    command: ["echo", "$(IP):$(PORT)"]        # 语法 $() 会让 k8s 创建容器时引用 env 环境变量,而不是引用 shell 环境变量。如果该变量不存在,则 $ 符号不生效,会输出原字符串
    
  • 可以将 Pod 的 一些字段 (opens new window) 保存为 env 环境变量,例:

    env:
    - name: POD_NAME
      valueFrom:
        fieldRef:
          apiVersion: v1
          fieldPath: metadata.name
    - name: APP_NAME
      valueFrom:
        fieldRef:
          apiVersion: v1
          fieldPath: metadata.labels['k8s-app']
    - name: LIMITS_CPU
      valueFrom:
        resourceFieldRef:
          containerName: container-0
          resource: limits.cpu
    

# DNS

  • k8s 集群内通常会运行一个 DNS 服务器,比如 CoreDNS 。允许创建一些只在 k8s 集群内有效的域名,解析到 pod_ip 或 service_ip 。

    • k8s 默认会修改每个 Pod 内的 /etc/resolv.conf 文件,让 Pod 将 DNS 查询请求发送到该 DNS 服务器。
    • 例如在 Pod 内访问任一 k8s service_name 时,默认会 DNS 解析到 service_ip 。
  • 建议让 Pod 慎用 DNS 查询功能。因为:

    • 进行 DNS 查询需要一定耗时。
    • Pod 里运行的程序可能不尊重 DNS 查询结果的 TTL ,甚至无限期缓存 DNS 查询结果,直到重启程序。
  • dnsPolicy 表示容器内采用的 DNS 策略,常见的几种取值:

    • ClusterFirst
      • :默认值,表示查询一个域名时,优先解析为 k8s 集群内域名。如果不能解析,才尝试解析为集群外域名。
      • 此时会自动在宿主机 /etc/resolv.conf 文件的基础上为容器生成 /etc/resolv.conf 文件,内容示例:
        nameserver 10.43.0.10     # k8s 集群内的 DNS 服务器,比如 CoreDNS
        search default.svc.cluster.local svc.cluster.local cluster.local openstacklocal
        options ndots:5
        
        • 如果查询同一个命名空间下的短域名,比如 nginx ,则首先尝试解析 nginx.default.svc.cluster.local ,因此第一个 search 域就解析成功。
        • 如果查询其它命名空间下的域名,比如 redis.db.svc.cluster.local ,其点数为 4 ,因此第一个 search 域会解析失败,第二个 search 域才解析成功,增加了 DNS 请求数。
    • Default
      • :采用 Pod 的宿主机的 /etc/resolv.conf 文件,因此不能解析 k8s 集群内域名。
    • None
      • :不自动为容器生成 /etc/resolv.conf 文件,此时需要用 dnsConfig 自定义配置。
  • dnsConfig 用于自定义容器内 /etc/resolv.conf 文件中的配置参数。例:

    kind: Pod
    spec:
      dnsPolicy: "None"
      dnsConfig:
        nameservers:
        - 8.8.8.8
        searches:
        - default.svc.cluster.local
        options:
        - name: ndots
          value: "4"
        - name: timeout
          value: "3"
    
  • 除了修改 DNS 服务器,也可以修改 Pod 中的 /etc/hosts 文件,从而影响 DNS 解析。例:

    kind: Pod
    spec:
      hostAliases:        # 修改 Pod 中的 /etc/hosts 文件,添加一些解析规则
      - ip: 127.0.0.1
        hostnames:
        - localhost
      - ip: 10.0.0.1
        hostnames:
        - node1
        - server1
    
    • /etc/hosts 文件的内容,来源于容器镜像。用户不应该手动修改该文件,否则重建容器时,该文件会被还原。
    • 不管是否配置 hostAliases ,k8s 都会修改 Pod 中的 /etc/hosts 文件,添加一条规则 <pod_ip> <pod_name>

# priority

  • 优先级(priority)
    • :多个 Pod 同时等待 kube-scheduler 调度时,会选出 priority 最高的 Pod 优先调度。如果该 Pod 调度成功或不可调度,才调度 priority 较低的 Pod 。
  • 抢占(Preemption)
    • :当一个 Pod 缺乏可用资源来调度时,会自动驱逐某个节点上一些 priority 较低的 Pod (这会优雅地终止),腾出 CPU、内存等资源。
    • 在抢占成功之前,如果出现另一个可用节点,则停止抢占。
    • 在抢占成功之前,如果出现另一个 priority 更高的 Pod ,则优先调度它。而当前 Pod 会重新调度。
  • PriorityClass
    • :一种不受命名空间管理的 k8s 对象,用于配置 Pod priority 。
    • 例:创建一个 PriorityClass
      apiVersion: scheduling.k8s.io/v1
      kind: PriorityClass
      metadata:
        name: test-priority
      value: 1000                               # 优先级,取值范围为 0~2^32 ,默认为 0
      # preemptionPolicy: PreemptLowerPriority  # 抢占策略,默认会抢占 priority 较低的 Pod 。设置成 Never 则放弃抢占
      # globalDefault: false                    # 是否将该 PriorityClass 默认绑定到所有 Pod 。最多存在一个默认的 PriorityClass
      
      绑定到 Pod :
      kind: Pod
      spec:
        priorityClassName: test-priority
      
      此后新创建的 Pod 会自动根据 PriorityClass 设置 priority ,但不会影响已创建的 Pod 。
    • k8s 自带了两个 PriorityClass ,用于部署系统组件。
      system-cluster-critical
      system-node-critical
      

# securityContext

  • 可选配置 securityContext 字段,声明安全上下文。如下:

    apiVersion: v1
    kind: Pod
    metadata:
      name: curl
    spec:
      securityContext:
        runAsUser: 1000       # 启动容器内每个进程时,采用该 user id 身份。如果不配置该字段,则由 Dockerfile 决定 uid
        runAsGroup: 2000      # 启动容器内每个进程时,采用该 group id 身份。如果不配置该字段,则由 Dockerfile 决定 gid
        fsGroup: 3000         # 指定容器内用户所属的扩展用户组,并且将 volume 中所有文件的 gid 改为该值
        fsGroupChangePolicy: Always           # 每次挂载 volume 时,递归修改其中所有文件的 gid 。这是默认策略,但如果有大量文件需要处理,则会拖慢 Pod 启动速度
        # fsGroupChangePolicy: OnRootMismatch # 每次挂载 volume 时,如果根目录的 gid 不符合 securityContext ,才递归修改
        capabilities: ...     # 给容器分配某些方面的 Linux 权限,参考 https://man7.org/linux/man-pages/man7/capabilities.7.html
          drop:
            - all
          add:
            - NET_BIND_SERVICE
        seLinuxOptions: ...   # 基于 seLinux 这个 Linux 内核模块,限制容器的权限
        seccompProfile: ...   # 基于 seccomp 这个 Linux 内核模块,限制容器的权限
      containers:
      - name: curl
        image: alpine/curl:latest
        securityContext:
          privileged: false     # 是否特权容器
        volumeMounts:
        - name: vol-data
          mountPath: /data
      volumes:
      - name: vol-data
        emptyDir:
          sizeLimit: 100Mi
    
    • 可以在 Pod 级别配置 securityContext ,也可给 Pod 中的每个 container、initContainers、ephemeralContainers 单独配置 securityContext 。
    • 如果在 Pod 级别配置了 securityContext.xx 字段,并且在 container 级别未配置同名字段,则会继承 Pod 级别的配置。
  • 关于 fsGroup 配置参数:

    • 工作原理:
      • 每次挂载 volume 到 Pod 时,将 volume 中所有文件的 gid 改为该值。(不会修改文件的 uid)
      • 挂载之后,如果容器内进程在该 volume 目录下新建文件,则文件的 uid 取决于 runAsUser 参数,文件的 gid 取决于 fsGroup 参数。(通过 Linux setgid 实现)
      • 挂载之后,如果容器内进程在非 volume 目录下新建文件,则文件的 uid 取决于 runAsUser 参数,文件的 gid 取决于 runAsGroup 参数。
    • 如果挂载 hostPath 类型的 volume ,则不会修改其 gid 。
    • 只能在 Pod 级别配置 fsGroup 和 fsGroupChangePolicy ,在 container 级别不支持配置。
  • 用上述配置创建一个 Pod ,然后进入容器终端,效果如下:

    $ id
    uid=1000 gid=2000 groups=2000,3000
    $ touch /data/f1
    $ ls -alh /data
    total 0
    drwxrwsr-x    2 root     3000          16 Jan 12 12:22 .
    drwxr-xr-x    1 root     root          40 Jan 12 12:19 ..
    -rw-r--r--    1 1000     3000           0 Jan 12 12:22 f1
    

# 生命周期

  • 一个对象从创建到存在、删除的过程称为生命周期(lifecycle)。这里分析下 Pod 的生命周期。

# 创建

  • 从用户角度来看,创建 Pod 的流程:

    1. 用户编写 Pod 的配置文件,声明 Pod 的期望状态。
    2. 用户执行命令 kubectl apply -f xx.yml ,创建 Pod 。
    3. k8s 自动部署该 Pod 。
  • 从 k8s 角度来看,创建 Pod 的流程:

    1. 客户端发送请求到 apiserver ,请求创建一个 Pod 。
    2. apiserver 检查客户端请求是否有效,包括身份认证、鉴权、准入控制等。如果有效,才继续下一步。
    3. apiserver 创建 Pod ,将配置信息保存到 etcd 数据库。
    4. kube-scheduler 一直通过 watch 机制监听 apiserver 的 event ,发现有新建的 Pod 就自动管理,决定将该 Pod 调度到哪个节点上。
    5. 每个节点的 kubelet 一直通过 watch 机制监听 apiserver 的 event ,发现有新调度到当前节点的 Pod 就自动部署,包括拉取镜像、创建容器等工作。
    6. kubelet 保持运行 Pod ,定期上报节点状态、Pod 状态到 apiserver 。

# phase

  • Pod 的生命周期分为多个阶段(phase):

    • Pending
      • :Pod 已创建,但尚未运行。
    • Running
      • :运行中。表示 Pod 中所有 init 容器已执行完,所有普通容器已创建,且至少有一个普通容器处于 running 状态。
    • Succeeded
      • :Pod 中所有容器都已经正常终止。又称为 Completed 状态。
    • Failed
      • :Pod 中所有容器都已经终止,且至少有一个容器是异常终止。
    • Unkown
      • :状态未知。
      • 例如 apiserver 与 kubelet 断开连接时,就不知道 Pod 的状态。
  • 一般 Pod 会按顺序经过 Pending、Running、Succeeded 阶段,但也可能在几个阶段之间反复切换。

  • k8s 定义了上述几个 Pod phase ,不过通常还会用 Scheduled、terminated 等状态(status)来形容 Pod 。

# 启动

  • Pod 在 Pending 阶段,需要完成以下任务,才能进入 Running 阶段。
    • 调度节点
      • 这决定了将 Pod 部署到哪个节点上。
      • 每个 Pod 在创建之后,只会被调度一次。一旦 Pod 被调度到一个节点,就会一直运行直到被删除,不能迁移部署到其它节点。
    • 拉取镜像
      • 如果拉取镜像失败,则 Pod 报错 ImagePullBackOff ,会每隔一段时间重试拉取一次。间隔时间按 0s、10s、20s、40s 数列增加,最大为 5min 。Pod 成功运行 10min 之后会重置间隔时间。
    • 创建容器
      • kubelet 会调用 CRI 组件来创建容器,调用 CNI 组件来配置容器的网络,调用 CSI 组件来挂载数据卷。
    • 启动容器
      • kubelet 会先启动 init 容器,再启动普通容器。

# 终止

  • 如果 Pod 中所有容器已终止运行,处于 terminated 状态,则认为整个 Pod 处于终止(terminated)状态。

    • Pod 终止并不是暂停。此时容器内进程已退出、消失,不能恢复运行。
    • Pod 终止之后,可能触发 restartPolicy ,也可能被 Deployment、Job 等控制器自动删除。如果没有删除,则会一直占用 Pod IP 等资源。
      • kube-controller-manager 会在 terminated pod 数量达到 terminated-pod-gc-threshold 阈值时,删除它们。
      • 用户也可以添加一个 crontab 任务来删除 Failed Pod :
        kubectl delete pods --all-namespaces --field-selector status.phase=Failed
        
  • Pod 终止的常见原因:

    • Pod 自行终止,进入 Succeeded 或 Failed 阶段。
    • kubelet 主动终止 Pod 。一般流程如下:
      1. kubelet 发现 Pod 变为 Terminating 状态,于是主动终止 Pod 。
      2. kubelet 向容器内 1 号进程发送 SIGTERM 信号,然后等待容器终止。
      3. 等待宽限期(terminationGracePeriodSeconds)时长之后,如果容器仍未终止,则向容器内所有进程发送 SIGKILL 信号。因为有宽限期,这称为优雅地终止。
    • Linux 内核主动终止 Pod 。
      • 比如因为 OOM 杀死容器内 1 号进程、用 kill 命令杀死容器内 1 号进程。
      • 这种情况不受 kubelet 控制,因此宽限期不生效。Pod 会立即终止,可能中断正在执行的事务,甚至丢失数据。
    • 主机宕机,导致所有 Pod 终止。
  • 用户可调用 apiserver 的以下几种 API ,让 kubelet 终止 Pod ,称为自愿中断(voluntary disruptions)。

    • Delete Pod
      • 流程如下:
        1. apiserver 将 Pod 标记为 Terminating 状态。
        2. kubelet 发现 Pod 变为 Terminating 状态,于是终止 Pod ,删除其中的容器,然后通知 apiserver 。
        3. apiserver 从 etcd 数据库删除 Pod 。
      • 在 k8s 中,修改一个 Pod 的配置时,实际上会创建新 Pod 、删除旧 Pod 。
    • Evict Pod
      • :驱逐,过程与 Delete 一致。
      • kubelet 会在节点资源不足时自动驱逐 Pod ,此时 Pod 会标记为 evicted 状态、进入 Failed 阶段。
      • Deploytment 不会自动删除下级的 evicted Pod ,而 DaemonSet、StatefulSet 会自动删除。

# 重启

  • kubelet 启动一个 Pod 之后,会一直运行其中的所有容器,直到容器终止,即容器从 running 状态变为 terminated 状态。

    • 任一容器终止之后,都会根据 restartPolicy 判断是否自动重启。
    • 重启容器时,实际上是创建一个新的容器实例,而旧的容器实例会被 kubelet 根据垃圾回收策略自动删除。
    • 如果容器连续重启失败,则重启的间隔时间按 0s、10s、20s、40s 数列增加,最大为 5min 。容器成功运行 10min 之后会重置间隔时间。
      • 如果 Pod 中包含多个容器,则每个容器的重启间隔会分别计算。所有容器的重启次数之和,记作 Pod 的重启次数。
      • Pod 不支持限制重启次数,会无限重启。而 Job 可通过 backoffLimit 限制重试次数。
  • Pod 的重启策略(restartPolicy)分为三种:

    Always     # 当容器终止时,总是会自动重启。这是默认策略
    OnFailure  # 只有当容器异常终止时,才会自动重启
    Never      # 总是不会自动重启
    
    • Deployment、Daemonset、StatefulSet 适合部署长期运行的 Pod ,容器退出时会自动自动重启,除非被删除。因此 restartPolicy 只能为 Always 。
    • Job 适合部署运行一段时间就会自行终止的 Pod ,因此 restartPolicy 只能为 Never 或 OnFailure 。
  • 例:

    1. 部署一个名为 kafka 的 Pod ,包含 kafka、exporter 两个容器,restartPolicy 为 always 。
    2. 执行命令 docker ps -a | grep kafka ,可见节点上存在 3 个容器:
      Up 5 minutes   k8s_exporter_kafka-dcr7n_base_0d5af3a6-b27e-4e21-a39e-a2d25f704152_0
      Up 5 minutes   k8s_kafka_kafka-dcr7n_base_0d5af3a6-b27e-4e21-a39e-a2d25f704152_0
      Up 5 minutes   k8s_POD_kafka-dcr7n_base_0d5af3a6-b27e-4e21-a39e-a2d25f704152_0      # 每个 Pod 都会先创建一个 pause 容器
      
    3. docker stop 终止 kafka 容器,则 kubelet 会立即创建一个新的 kafka 容器,此时全部容器如下:
      Up 3 seconds              k8s_exporter_kafka-dcr7n_base_0d5af3a6-b27e-4e21-a39e-a2d25f704152_1  # 新容器,容器名末尾的 restart_count 为 1
      Exited (2) 4 seconds ago  k8s_exporter_kafka-dcr7n_base_0d5af3a6-b27e-4e21-a39e-a2d25f704152_0  # 旧容器已终止,退出码为 2
      Up 5 minutes              k8s_kafka_kafka-dcr7n_base_0d5af3a6-b27e-4e21-a39e-a2d25f704152_0
      Up 5 minutes              k8s_POD_kafka-dcr7n_base_0d5af3a6-b27e-4e21-a39e-a2d25f704152_0
      
      • 上一个 kafka 容器的 restart_count 为 0 ,因此 kubelet 创建新容器时,将 restart_count 递增,改为 1 。
      • 如果此时用 docker rm -f 删除 kafka 容器,则 kubelet 创建新容器时,restart_count 依然为 1 ,不会递增。因此容器名不变,只是容器 id 不同。
    4. 再用 docker stop 终止 kafka 容器,此时 containerStatuses 如下:
      state:
        terminated:                           # 容器处于 terminated 状态
          containerID: docker://223a2fd66e35d391275594a4e174ab01de5e72bc6b965bfc768eed4c041bd21a
          exitCode: 2
          finishedAt: "2020-01-17T02:58:18Z"
          reason: Error                       # 处于当前状态的原因是 Error ,表示异常终止
          startedAt: "2020-01-17T02:57:45Z"
      
      kubelet 会等待 10s 才创建一个新的 kafka 容器,此时 containerStatuses 如下:
      state:
        waiting:                              # 容器处于 waiting 状态
          message: back-off 10s restarting failed
          reason: CrashLoopBackOff            # 处于当前状态的原因是 CrashLoopBackOff ,表示从崩溃到重启的循环
      
      • 上例只终止一个容器,Pod 内还有其它普通容器在运行,因此 Pod 一直处于 Running 阶段。
      • 如果同时终止 Pod 内所有容器,则 Pod 会进入 Failed 阶段,也会根据 restartPolicy 重启。

# 状态

以下是一个 Pod 对象的状态示例:

kind: Pod
status:
  conditions:             # Pod 的一些状态条件
  - type: Initialized     # condition 类型
    status: "True"        # 是否符合当前 condition ,可以取值为 True 、False 、Unknown
    lastProbeTime: null   # 最近一次探测的时刻
    lastTransitionTime: "2021-12-01T08:20:23Z"  # 最近一次改变该 condition 的 status 的时刻
  - type: Ready
    status: "True"
    lastProbeTime: null
    lastTransitionTime: "2021-12-01T08:21:24Z"
  containerStatuses:      # 容器的状态
  - containerID: docker://2bc5f548736046c64a10d9162024ed102fba0565ff742e16cd032c7a1b75cc29
    image: nginx:latest
    imageID: docker-pullable://nginx@sha256:db3c9eb0f9bc7143d5995370afc23f7434f736a5ceda0d603e0132b4a6c7e2cd
    name: nginx
    ready: true
    restartCount: 0       # Pod 被 restartPolicy 重启的次数
    started: true
    state:
      running:
        startedAt: "2021-12-01T08:21:23Z"
  hostIP: 10.0.0.1
  podIP: 10.42.57.150
  phase: Running          # Pod 所处的生命周期阶段
  startTime: "2021-12-01T08:20:23Z"
  • 与 phase 类似,k8s 给一些资源定义了多种状态条件(conditions)。

    • 一个资源可能同时符合多种 conditions ,但同时只能处于一种 phase 。例如 Pod 可以同时符合 PodScheduled、Ready 条件。
    • k8s 会根据一个资源符合哪些 conditions ,判断该资源所处的 phase 。
    • 用户可以添加自定义的 conditions 。
  • status.conditions.type 记录了 Pod 的多种 conditions :

    PodScheduled      # Pod 已被调度到一个节点上
    Unschedulable     # Pod 不能被调度到节点上。可能是缺乏可用节点、找不到挂载卷等资源
    Initialized       # Pod 中的所有 init 容器都已运行成功
    ContainersReady   # Pod 中的所有容器已运行,且处于就绪状态
    Ready             # 整个 Pod 处于就绪状态,可以开始工作,又称为健康(health)状态。此时该 Pod 才会加入 EndPoints ,被 Service 反向代理
    
  • status.containerStatuses.state 记录了容器的状态,有以下三种取值:

    waiting       # 等待一些条件才能启动。比如拉取镜像、挂载数据卷、等待重启间隔
    running       # 正在运行
    terminated    # 已终止运行,包括正常终止、异常终止
    
  • Pod 的状态主要取决于其中容器的状态。

    • 当所有容器处于 running 状态,并通过 readinessProbe 检查时,Pod 才处于 Running 阶段、Ready 状态。
    • 当任一容器变为 terminated 状态时,kubelet 会将 Pod 取消 Ready 状态,并触发 restartPolicy 。

# 探针

  • Pod 有时会遇到以下问题,推荐的解决方案是使用探针。

    • 容器刚启动时,可能还在初始化,kubelet 就认为 Pod 处于 Ready 状态,过早接入 Service 的访问流量。
    • 容器运行期间突然故障,kubelet 却不能发现,依然接入 Service 的访问流量。
  • 可以给 Pod 定义三种不同用途的探针,让 kubelet 定期对容器进行健康检查:

    • startupProbe
      • :启动探针,用于判断容器是否已启动成功。如果探针结果为 Failure ,则触发 restartPolicy 。
      • 适用于启动耗时较久的容器。
    • readinessProbe
      • :就绪探针,用于探测容器是否就绪。如果探测结果为 Success ,则将 Pod 标记为 Ready 状态。
      • 适用于运行期间可能故障,且不需要重启的容器。
    • livenessProbe
      • :存活探针,用于探测容器是否正常运行。如果探测结果为 Failure ,则触发 restartPolicy 。
      • 适用于运行期间可能故障,且需要重启的容器。
  • 定义了探针时,会按以下顺序执行:

    1. 创建容器,执行启动命令 ENTRYPOINT 。
    2. 执行 startupProbe 探针,判断容器是否已启动成功。如果启动成功,才执行另外两个探针。
    3. 执行 readinessProbe、livenessProbe 探针,判断容器运行期间是否故障。
      • 这两个探针会周期性执行、并发执行。
  • 探针可执行多种操作:

    exec        # 在当前容器中执行指定命令,如果命令的退出码为 0 ,则探测结果为 Success
    tcpSocket   # 访问容器的指定 TCP 端口,如果能建立 TCP 连接(不必保持),则探测结果为 Success
    httpGet     # 向容器的指定端口、URL 发出 HTTP GET 请求,如果收到响应报文,且状态码为 2xx 或 3xx ,则探测结果为 Success
    grpc
    
    • 执行 exec 操作时,产生的 stdout、stderr 不会输出到容器终端,除非主动重定向,例如: run.sh 1> /proc/1/fd/1 2> /proc/1/fd/2
    • 执行 exec 操作时,不能通过语法 $() 引用 spec.containers[].env 中的环境变量。
  • 每次执行探针时,探测结果有三种:

    Success
    Failure
    Unknown     # 未知结果,此时不采取行动
    
    • Pod 默认未定义探针,相当于探测结果一直为 Success 。
    • Pod 定义了探针时,探测结果默认为 Failure ,需要探测成功,才能变为 Success 。
    • 如果探测结果为 Failure ,则会记录一个 Warning 级别的 k8s event ,例如: Unhealthy: Readiness probe failed

例:

kind: Pod
spec:
  containers:
  - name: nginx
    startupProbe:
      exec:
        command:
        - ls
        - /tmp/health
      # initialDelaySeconds: 0  # 容器刚启动时,等待几秒才开始第一次探测
      # periodSeconds: 10       # 每隔几秒探测一次
      # timeoutSeconds: 1       # 每次探测的超时时间
      # failureThreshold: 3     # 容器处于 Success 时,连续多少次探测为 Failure ,才判断容器为 Failure
      # successThreshold: 1     # 容器处于 Failure 时,连续多少次探测为 Success ,才判断容器为 Success
    readinessProbe:
      httpGet:
        path: /health
        port: 80
        # scheme: HTTP
        httpHeaders:            # 给请求报文添加 Headers
        - name: X-Custom-Header
          value: hello
    livenessProbe:
      tcpSocket:
        port: 80
      periodSeconds: 3
  • 定义了 startupProbe 探针时,容器必须在 initialDelaySeconds + failureThreshold × periodSeconds 时长内成功启动,否则会触发 restartPolicy ,陷入死循环。

# hook

  • k8s 支持添加钩子(hook),用于当容器生命周期发生某些 k8s event 时,执行自定义的操作。

    • hook 可执行 exec、httpGet 等类型的操作,像探针。
  • 目前可添加两种 hook :

    • postStart :在启动容器时执行,使得 kubelet 启动容器的流程变成这样:

      1. kubelet 创建容器。
      2. 在容器内执行启动命令 ENTRYPOINT 作为 1 号进程,执行 postStart 作为普通进程。
        • postStart 与 ENTRYPOINT 是异步执行的,不能控制先后执行的顺序。
      3. 等 postStart 执行成功之后,kubelet 才会将容器的状态改为 Running 。
        • 如果 postStart 执行结果为 Failure ,则触发 restartPolicy 。
        • 如果容器的 postStart 一直在执行,则该容器会阻塞在 ContainerCreating 状态。此时 Pod 不能正常终止,需要执行 kubectl delete --force $pod
      4. 执行 startupProbe 探针。
      5. 执行 readinessProbe、livenessProbe 探针。
    • preStop :在终止容器时执行,使得 kubelet 终止容器的流程变成这样:

      1. kubelet 发现 Pod 的状态变为 Terminating (可能是因为 apiserver 要求终止该 Pod ),于是开始主动终止 Pod 。
        • kubelet 主动终止 Pod 时,才会执行 preStop 钩子。
        • 如果容器自己终止变为 Succeeded 或 Failed 状态,或者容器被 OOM 终止,这些过程不受 kubelet 控制,因此不会执行 preStop 钩子。
      2. kubelet 执行 preStop 钩子,然后等待容器终止。
      3. 如果 preStop 执行完了,容器仍未终止,则向容器内 1 号进程发送 SIGTERM 信号,然后继续等待容器终止。
      4. 等待宽限期(terminationGracePeriodSeconds)时长之后,如果容器仍未终止,则向容器内所有进程发送 SIGKILL 信号。
  • 例:

    kind: Pod
    spec:
      contaienrs:
      - name: nginx
        lifecycle:
          postStart:
            exec:
              command:
              - /bin/bash
              - -c
              - echo hello; sleep 1
          preStop:
            httpGet:
              path: /stop
              port: 80
    
  • 终止 Pod 时(例如减少 replicas 、更新 Deployment),可能终止一些尚未处理完业务请求的 Pod 。可采用以下对策,实现优雅终止:

    • 如果 Pod 处理业务请求的耗时只有几分钟,则可添加 preStop 钩子,避免 Pod 被立即终止。
    • 如果 Pod 处理业务请求的耗时长达几小时,则可通过 Job 方式部署 Pod ,让 Pod 运行一段时间之后自行终止。

# 资源配额

  • Pod 中的容器默认可以无限占用 CPU、内存,可能导致节点资源不足。因此建议给每个容器配置 resources 资源配额,例:

    kind: Pod
    spec:
      containers:
      - name: nginx
        image: nginx:latest
        resources:
          limits:
            cpu: 500m               # 每秒占用的 CPU 核数
            ephemeral-storage: 1Gi  # 占用的临时磁盘空间
            memory: 512Mi           # 占用的内存
          requests:
            cpu: 100m
            ephemeral-storage: 100Mi
            memory: 100Mi
    
  • requests 表示该容器期望占用的资源量,limits 表示该容器最多占用的资源量。

    • 创建 Pod 时,如果任一容器配置的 requests 大于 limits 值,则创建失败。
    • 调度 Pod 时,会将所有容器的 requests 总和记作 Pod requests ,然后寻找可用资源不低于 Pod requests 的节点。如果不存在,则调度失败。
    • 启动 Pod 时,会为各个容器分别创建一个 Cgroup ,然后根据该容器的 limits 设置 cpu.cfs_quota_us、memory.limit_in_bytes 阈值,从而限制该容器的资源开销。
    • k8s v1.8 增加了 ephemeral-storage 功能,用于声明容器的磁盘配额。它不是基于 Cgroup 技术,而是直接测量 Pod 的 container rootfs、container log、emptyDir 占用的磁盘空间。
  • 当容器占用的资源超过 limits 时:

    • 如果超过 limits.cpu ,则让 CPU 暂停执行容器内所有进程,直到下一个 CPU 周期。
    • 如果超过 limits.memory ,则触发 OOM-killer ,杀死容器内占用内存最多的那个进程。通常是杀死容器内 1 号进程,导致容器终止,然后根据 restartPolicy 自动重启。
    • 如果超过 limits.ephemeral-storage ,则 kubelet 会发出驱逐信号 ephemeralpodfs.limit ,从当前节点驱逐该 Pod 的所有容器。
  • 建议监控 Pod 内各个容器运行一段时间的实际资源开销,据此配置 requests、limits 。

    • 例如用脚本自动配置:
      requests.cpu = average_over_24_hours(monitor.cpu)   # 根据 24 小时的平均开销设置 requests 资源
      limits.cpu   = max_over_24_hours(monitor.cpu)       # 根据 24 小时的最大开销设置 requests 资源
      
    • 理想的情况是,Pod 的 requests 等于 limits ,这样 k8s 容易预测 Pod 的资源开销,将 Pod 调度到有足够资源的节点上,避免运行 Pod 一段时间之后才发现节点资源不足。
    • 有些 Pod 的资源开销不稳定,难以预测。例如一个 Pod 运行一段时间,平均只占用 0.1 核 CPU ,但启动时占用 1 核 CPU ,高峰期占用 2 核 CPU 。
      • 如果配置 requests=limits=2 ,远大于平均开销,则大部分时间都会浪费节点资源。
      • 如果配置 requests=limits=0.1 ,远小于启动开销、高峰期开销,则启动耗时久、高峰期 Pod 资源不足。
      • 如果配置 requests=0.1、limits=2 ,则能解决上述两个问题,但 k8s 难以预测 Pod 的资源开销。如果多个这样的 Pod 调度到同一个节点上,limits 之和可能超过节点总资源,高峰期可能耗尽节点资源。
      • 如果通过 VPA 自动调整 Pod 的资源开销,则能解决上述三个问题,但比较麻烦。
  • Pod 包含 init 容器时,这样考虑资源配额:

    • 如果多个 init 容器配置了同一种配额,比如 requests.cpu、limits.cpu ,则采用这些 init 容器中最大的一个配额,作为有效值,作用于所有 init 容器的运行过程。
    • 调度 Pod 时,节点的可用资源必须大于以下两者的较大值:
      • 所有普通容器的 requests 配额的总和
      • 全部 init 容器的 requests 配额的有效值

# QoS

  • k8s 在调度 Pod 时有几种 QoS(Quality of Service,服务质量)。
    • 用户不能主动选择 QoS 。k8s 会自动根据 Pod 的 resources 配置,给 Pod 分配一种 qosClass 。
  • Pod 的 qosClass 有三种,服务质量从高到低排列如下:
    • Guaranteed
      • :有保证的服务质量。
      • 需要 Pod 中每个容器都配置了 requests.cpu、limits.cpu 且两者相等,都配置了 requests.memory、limits.memory 且两者相等。
      • 例如用以下配置创建 Pod :
        resources:
          limits:
            memory: 200Mi
            cpu: 100m
          requests:
            memory: 200Mi
            cpu: 100m
        
        查看 Pod 的状态,可见:
        status:
          qosClass: Guaranteed
        
    • Burstable
      • :不稳定的服务质量。
      • 需要 Pod 不满足 Guaranteed QoS 的条件,但至少有一个容器配置了 requests.cpu、limits.cpu、requests.memory、limits.memory 至少一项。即 Pod 有 resources 配置但不严格。
      • 一般而言,大部分类型的 Pod 只能满足 Burstable 的条件,不能满足 Guaranteed 的严格条件。
    • BestEffort
      • :尽力而为的服务质量。
      • 需要 Pod 中所有容器都没有配置 requests.cpu、limits.cpu、requests.memory、limits.memory 。此时 k8s 不能预测、限制 Pod 的 cpu、memory 开销,只能尽力而为。
  • qosClass 的影响:
    • 发生节点压力驱逐时,优先驱逐 BestEffort、Burstable 类型的 Pod 。如果不存在这两种 Pod ,才驱逐 Guaranteed 类型的 Pod 。
    • 服务质量越低,容器被 Cgroup 设置的 oom_score_adj 分数越大,越可能在主机内存紧张时被 OOM 杀死。
      • Guaranteed 类型的 oom_score_adj 为 -997 ,Burstable 类型的是根据公式 min(max(2, 1000-(1000*memoryRequestBytes)/machineMemoryCapacityBytes), 999) 计算,BestEffort 类型的为 1000 。

# RuntimeClass

  • 可以创建 RuntimeClass 对象,自定义容器运行时。
  • 例:
    apiVersion: node.k8s.io/v1
    kind: RuntimeClass
    metadata:
      name: test-rc
    handler: test-rc      # 通过 CRI 调用某个 handler ,负责创建、管理容器
    # overhead:
    #   podFixed:         # 单个 Pod 本身需要占用的系统资源
    #     cpu: 100m
    #     memory: 100Mi
    # scheduling:         # 调度规则,用于将 Pod 调度到某些节点上,比如支持该容器运行时的节点
    #   nodeSelector:
    #     project: test
    #   tolerations:
    #     - key: k1
    #       operator: Equal
    #       value: v1
    #       effect: NoSchedule
    
    kind: Pod
    spec:
      runtimeClassName: runC-pod    # Pod 采用的 RuntimeClass 。默认为空,即采用默认的容器运行时
    
  • 默认的 Pod overhead 为空,即不考虑。如果指定了非空值,则:
    • 调度 Pod 时,会累计 Container requests、Pod overhead 资源,作为 Pod requests ,寻找有足够可用资源的节点。
    • 启动 Pod 时,会累计 Container limits、Pod overhead 资源,作为 Pod limits ,根据它设置 Cgroup 阈值。

# LimitRange

  • 可以创建 LimitRange 对象,设置单个容器的资源配额的默认值、取值范围。例:
    apiVersion: v1
    kind: LimitRange
    metadata:
      name: test-limit-range
      namespace: default      # 作用于该命名空间
    spec:
      limits:
      - default:              # 每个容器 limits 的默认值
          cpu: 500m
          memory: 512Mi
          ephemeral-storage: 1Gi
        # defaultRequest:     # 每个容器 requests 的默认值。如果不指定,则自动设置为上述的 default 值
        #   memory: 100Mi
        # max:                # 每个容器 limits 的最大值
        #   memory: 1Gi
        # min:                # 每个容器 requests 的最小值
        #   memory: 100Mi
        type: Container
    
    • 创建容器时,
      • 如果未指定 limits、requests ,则自动设置为默认值。特别地,如果指定了 limits、未指定 requests ,则将 requests 设置为 limits 。
      • 如果指定的 limits 不符合 max、min 条件,则创建失败。
    • 已创建的容器不受 LimitRange 影响。

# ResourceQuota

  • 可以创建 ResourceQuota 对象,限制一个 namespace 中全部 Pod 的资源总配额。例:
    apiVersion: v1
    kind: ResourceQuota
    metadata:
      name: test-rq
      namespace: default
    spec:
      hard:
        requests.cpu: "10"                # 限制全部 Pod 的 requests 资源的总和
        limits.cpu: "20"
        requests.memory: 1Gi
        limits.memory: 2Gi
    
        requests.storage: 100Gi           # 限制 PVC 的总容量
        persistentvolumeclaims: "10"      # 限制 PVC 的总数
        requests.ephemeral-storage: 100Gi
        limits.ephemeral-storage: 100Gi
    
        pods: "100"                       # 限制 Pod 的总数
        services: "100"
        count/deployments.apps: "100"     # 可用 count/<resource> 的语法限制某种资源的总数
        hugepages-<size>: "100"           # 限制 某种尺寸的 hugepages 的总数
        nvidia.com/gpu: 2                 # 设置 GPU 资源,这需要安装 GPU 驱动
    
    # scopes:                             # 只限制指定范围的 Pod
    #   - BestEffort
    #   - NotBestEffort
    # scopeSelector:
    #   matchExpressions:
    #     - operator: In                  # 运算符可以是 In、NotIn、Exists、DoesNotExist
    #       scopeName: PriorityClass
    #       values:
    #         - high
    
    • 创建 Pod 时,如果该 Pod 加上已调度 Pod 的 limits、requests 超过总配额,则创建失败。
    • terminated 状态的 Pod 不会占用 cpu、memory、pods 等资源配额,但会占用 storage 等资源配额。